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The group 0(3),(T,xT2) and the hydrogen atom 

J W B Hughes and J Yadegar 
Department of Applied Mathematics, Queen Mary College, Mile End Road, London E l  
4NS, UK 

Received 27 April 1976 

Abslract. Properties of the seven parameter group 0(3),,(T2 X T2) are investigated using 
shift operator techniques. A complete classification and analysis of unitary irreducible 
representations is given and it is shown that a single arbitrary irreducible representation 
contains all those irreducible representations of the group O(4) which are realized by the 
hydrogen atom. Further, it is shown that the seven parameter group 0(3),,(T2XT2) is 
equally as good a choice for the dynamical group of the hydrogen atom as the more usual 
fifteen parameter group 0(4,2).  

1. Introduction 

Shift operator techniques have been used to analyse irreducible unitary representations 
(IUR) of groups containing O(3) as a subgroup with respect to IUR of O(3) for the case of 
SU(3) (Hughes 1973a, b), 0(4), O(3, 1) and E(3) (Hughes 1973b) and SL(3, R) 
(Hughes 1974). In all these cases the additional generators form an irreducible tensor 
representation {T(j, p ) ,  p = - j ,  . . . , j }  of O(3) corresponding to integral j ,  and the 
analysis was performed using operators which shift the 1 values of states upon which 
they act by integral amounts (1(1+ 1) is the eigenvalue of the O(3) Casimir L2) .  

In this paper we consider a group in which the generators additional to those of O(3) 
form a reducible tensor representation of 0(3), {T(i, *$), T(i, *$)}, so that the I shift 
operators constructed out of them change 1 by half-integral amounts. The group is 
denoted by 0(3),(T2 X T2), where T2, F2 denote mutually Hermitian two-dimensional 
translation groups, and is the simplest such group with T(j, p )  for which j is not integral; 
the apparently simpler group 0(3),,Tz has no non-trivial unitary representations and is 
therefore not considered. The next simplest such group is SU(3) in an SU(2) basis, 
which has an extra generator of type T(0,O); surprisingly, the techniques of this paper 
do yield new information even about that very well studied group, and this will be the 
subject of a later paper (Hughes and Yadegar 1976). 

o(3),(TZ X T2) is interesting for several reasons. Firstly it is the smallest non- 
compact group with an O(3) subgroup for which I degeneracy occurs. Moreover, unlike 
the case of, for instance, SL(3, R) it is possible not only to give a complete classification 
of its IUR, but also to give explicit formulae for the matrix elements of its generators 
valid for arbitrary states of an arbitrary IUR. 

The second reason why 0(3),,(T2 X T2) is interesting is that its enveloping algebra 
contains, in addition to an invariant, X, three O(3) scalar operators, Yo and Y*, which, 
when normalized by a term depending on the eigenvalue x of X, themselves generate an 
O(3) group whose Casimir equals L2.  Hence for any fixed IUR, 0(3),,(T2 x T2) contains 

1569 



1570 J WB Hughes and J Yadegar 

an O(4) subgroup and, moreover, this IUR contains, precisely once, each IUR of O(4) of 
type 1, = l2 = 1. These are just the IUR of O(4) realized by the hydrogen atom (see for 
instance Hughes (1967) and references therein). 0(3)A(T2 X T2) is therefore an alterna- 
tive to O(4, 1) as the spectral group of the hydrogen atom. 

One may, however, go even further and show that 0(3)~(T2 X T2) is the dynamical 
group of the hydrogen atom, in the sense of Barut and Kleinert (1966) (see also Kleinert 
(1968) and Wybourne (1974) for a review of this work). These authors show that 
operators connecting states of different values of the principal quantum number, n, may 
be constructed which, together with the generators of the symmetry group 0(4), close 
under commutation to give an IUR of the fifteen parameter group 0(4,2) ,  and obtain 
expressions for the matrix elements of the dipole operator in terms of those of the 
0(4,2) generators (thus justifying the name 'dynamical group'). 

If we identify our 1 with $(n - 1) we find that the n-shifting operators are precisely 
our l-shifting operators (our O(3) subgroup is not therefore, the group of space 
rotations generated by the angular momentum operators). Eight of these, together with 
Yo, Y*, L2 and the generators lo, 1, of O(3) satisfy, for a fixed IUR of 0(3)A(T2 X T2), the 
commutation relations of 0(4,2) .  Hence the IUR of 0(4 ,2)  used by Barut and Kleinert 
may be replaced by a fixed, but arbitrary, IUR of the far more economical group 
0(3)~(T2 x T2). All the matrix elements of the 0(4,2)  operators are in fact contained in 
those of the four operators T($, ff) and their Hermitian conjugates T($, Ti ) .  The fact 
that this can be done is not altogether surprising, since the IUR of 0(4,2)  used is highly 
degenerate. 

In 0 2 the properties of 0(3),(T2 X T2) will be discussed and the shift operators and 
their Hermiticity properties derived. The latter will be used in 0 3 to give a classification 
and analysis of the group's IUR. The application of the group to the hydrogen atom is 
given in 0 4. 

The basis for the Lie algebra of 0(3)~(T2 X T2) is most conveniently chosen to consist of 
the O(3) generators lo, 1, together with two pairs of operators both of which transform 
under commutation with the I o ,  1, as irreducible two-dimensional tensor representa- 
tions of O(3). We denote these by T($, *$) =q,l and T($, *$) = &i for short. Their 
non-vanishing commutation relations are 

The q+j and &$ mutually commute, as they have to in order that the Jacobi identity be 
satisfied for triples of operators such as (41, 94, 4-4). 

The Hermiticity properties of the operators are given by 

1; = lo, 1L = l,, 4f t  = f97.4. (2) 
We note here that the group 0(3),,T2 generated by Io,  1, and q*h has no non-trivial 
unitary representations since one cannot self-consistently have qL1 agF1.  The same 
applies to any group of the form o(3)AT2, with n integral (see Edmonds 1957). 

The group has one Casimir given by 

x= 449-4 -4-191 (3) 
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and three O(3)-scalar operators: 

Y+ =-(24t9-ilo+4-f4-!1+-4f4t1-) (4) 

Y-  = (2q;q-i Io + q-;q-; I +  - 4144 I - )  (5 )  

Yo = (414-t f o +  44q ;  f o  + 4-44-4 I+-qtqf I-). (6)  

YJ  = Yo, Y: = YT. (7) 

From (2) one may easily check that X is a positive definite Hermitian operator, and 

In addition, the Y satisfy the commutation relations 

[Yo, Y*l = *xu*, 

Y+ Y- + Y; -XY0 = X 2 L 2 .  

[ Y+, Y-] = 2XYo 
and 

The IUR of 0(3)*(T2 x T2) are labelled by the eigenvalues x of X,  and the states of 
the IUR will be denoted by I x ;  1, k, m )  where 1(1+ 1) and m are the eigenvalues of L2 and 
lo, and k is an additional parameter needed to distinguish states of the same 1 and m 
values in cases of I degeneracy. ( k  will in fact be chosen to be the eigenvalue of Yo/x.) 
Provided we are concerned with a fixed IUR corresponding to x # 0, we may normalize 
the Y by dividing them by x.  These normalized Y then clearly satisfy the commutation 
relations of the generators of a new O(3) whose Casimir equals L2, the Casimir of the 
original O(3). 

The matrix elements of the$& are given in terms of their reduced matrix elements 
and the Wigner 3-j symbols by (see Edmonds 1957) 

1 where p = =t?. 

From lo, 1, and q*t one can, in a manner completely analogous to that used by 
Hughes (1973a) construct shift operators which change the I values of states upon which 
they act by *;. Since one must then also change m by a half integral amount, we have the 
choice as to whether we change m by +$ or -3. In fact, although we shall not need both 
as far as the analysis of the IUR is concerned, both will be needed in the application to 
the hydrogen atom. Denoting by R the operator whose eigenvalue is I ,  these operators, 
together with their analogues constructed using the & t ,  are 

Provided these operators act upon basis states to the right, lo and R may be replaced by 
their eigenvalues. Their 1 and m shifting properties follow from the commutation 
relations 

Note here that whenever there is any doubt about the 1 and m values of the states upon 
which these shift operators act we shall prefix them with these I and m values. We shall 
always do this if in their expressions we are replacing R and lo by 1 and m. 
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From ( 2 )  one may, again in a manner completely analogous to that employed by 
Hughes (1973a), derive the Hermiticity properties of the shift operators. These are 
conveniently expressed by the equation 

( x ;  1 +$, k', m *$l(d;jiT,!,*;)tlx; I, k, m) (21 + 1) 
2(1+ 1) (x; l+& k', nt*$lO/,z'l~; 1, k, m)= F- 

(14) 
and 

(x; 1 -$, k', m *$IOL;*'IX; I ,  k ,  m) 

For the purpose of considering the IUR of 0(3),,(T2 x T2) it suffices to consider the 
normalized shift operators 

(-) 2);; =(I + m  +$(1* 1))-f o;k*f. (16) 
This effectively means that the internal O(3) structure of the IUR of 0(3),,(T2 x T,) has 
been divided out. 

Equations (14) and (15) now imply 

where the m dependence of the states has been suppressed. 
One may now use (14) and (17) to obtain various useful relations between the matrix 

elements of those products of two 0 or two A which commute with L 2  and lo. For 
brevity we write these down only for the A, the ones for the 0 being easily derivable 
from them. They are: 

From these equations we see that A-jA' and A'A-I are positive definite Hermitian 
operators, whereas A"-' and A-PAi  are negative definite and Hermitian. 

Finally, from the definitions of the shift operators and the Yo, Y*, one may readily 
verify the following equations: 

A~-$A;I  = A ; - ~ A /  = Y+ 
AI-tA;' - I  = A&A/ = - Y- 

(20) 

(21) 
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We now have all the mathematical apparatus necessary to consider the problem of 
classifying the IUR of 0(3),(T2 X T2), which we do in the following section. 

The first task is to give a classification of the types of IUR that may occur; this amounts to 
classifying the possible values of x and fmin consistent with the Hermiticity condition x 
real and x 3 0, and the condition that f ~ n  be a non-negative integer or half integer. The 
second task is to analyse the IUR, i.e. for a given IUR to specify the 1 values occurring and 
their degeneracies, to find a suitable labelling for states of the same I value, and to give 
the matrix elements between them of the generators(&. 

Clearly one must first perform the first task. We suppose a given IUR to correspond 
to the value x of X and to have the minimum 1 valuel. We suppress the m values of the 
states and when we refer to I being degenerate we do not count the (21+1)-fold 
degeneracy due to the interval O(3) structure. For to be the minimum value of 1, we 
clearly must have 

(-) , 
A[' lx; j ,  k) = 0 (24) 

A ! - ~ A ; + ; ~ ,  k) = A ~ - p i &  ; j ,  k) = o (25) 

and this clearly implies that 

and 

A~-iAF'lx;j, - -  k ) = A f - ~ A ; ~ l x ; j ,  k)= 0. 

Using equations (20)-(23) we see that 

Y*Jx;_l, k)= Y&;_I, k)=_IXlx;_l, k ) = O .  (27) 

Clearly then we must havelx = 0, which may be satisfied either if x = 0, in which case we 
may have j = O,&, 1, . . . , or if 1 = 0, in which case x may take on any non-negative real 
value. These are the only types of IUR that may arise and we give first an analysis of the 
first type. 

3.1. The IUR x = 0 

Here1 may be any non-negative integer or  half integer. Equation (8) shows that Yo, Y, 
mutually commute so that they generate a group isomorphic to the three-dimensional 
translation group. All IUR of this Abelian group are one-dimensional, so any I value 
which may occur must be non-degenerate. Equation (9) implies that 

Y+Y-+ Yi=O. (28) 

However, from the Hermiticity relation (7) it is readily verified that both Y+ Y- and Yi 
are positive definite operators, so (28) implies that, for any value of 1 occurring in the 
IUR, 

Y*Jl) = Yolf) = 0. 
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Equations (20)-(23) then show that 

so that there is no possibility of connecting states of different 1 values, in other words 
that the only 1 value occurring is 1 =_I. Also, since the matrix elements of the shift 
operators are proportional to the reduced matrix elements of the (&, we see that 

in other words the only generators with non-vanishing matrix elements are lo and l+. We 
may therefore conclude that the x = 0 IUR of 0(3),,(Tz X T,) are just the IUR of the O(3) 
subgroup. This is entirely analogous to the case of the Euclidean group o(3),,T3 
(Hughes 1973c) which also possesses two types of IUR, one of which contains just a 
single 1 value and which is such that the matrix elements of the T3 generators all vanish. 

As far as the group 0(3),,(T2 x T2) is concerned, we may therefore regard the x = 0 
IUR as trivial. The x # 0 IUR, which we now consider, are by no means trivial. 

3.2. f i e  IUR x # 0, _I = 0 

We restrict ourselves to the IUR specified by a fixed value of x > 0, and define 

1 1  - 1  
Yo = - Yo, Y*=-  Y ,  

X X 

These normalized operators clearly satisfy the Hermiticity relations (7), and the 
commutation relations of the generators of an O(3) roup. Whenever confusion 
may arise we label it OY(3), to distinguish it from 0 (3). Thus, for such an IUR, 
0(3),(T2 X T2) contains in its enveloping algebra the group O'(3) X OY(3), which is 
isomorphic to the group O(4). Not all IUR of O(4) may be realized in this way, since (9) 
implies 

F 

(30) ?+?-+9: -90=L 2 = l + l ~ + l ~ - l ~  2 

so that the Casimirs of the two O(3) groups are equal. The IUR of O(4) realized are 
therefore precisely those realized by the hydrogen atom (Hughes 1967). 

We may therefore choose the label k for the states lx; 1, k )  to be the eigenvalue of 
Po. Using the well known properties of IUR of OY(3) we see that €or a fixed value of I ,  k 
takes on the range of values k = -1, -1 + 1, . . . , I  - 1,l. Hence 1 is (21 + 1)-fold degener- 
ate or, if we include the degeneracy due to the internal O'(3) structure given by 
m = -1, -1 + 1, . . . , 1-1,1,1 is (21 + 1)2-fold degenerate, this being the dimension of the 
IUR of O(4) specified by 1. 

We may also use the well known properties of IUR of O(3) to obtain 

This also fixes the relative phases of states corresponding to the same 1 but different k 
values. 
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Equations (20)-(23) may now be used to obtain the following actions of the double 
shift operators: 

The effect of these operators on the k values of the states is due to the following easily 
verifiable commutation relations: 

[YO, A?'] =&A :!, [Yo, kif'] = -$xki:i (36) 
i.e. A:' raise, and A f i  lower, k by $. 

If we insert equations (34) and (35 into (18) and (19) we obtain the values of the 
modulus of the matrix elements of d. The relative phases of states corresponding to 
values of 1 differing by *$ can be fixed using equations (32) and (33). In this way we 
obtain the following actions: 

x(2l+l)(I*k+&$) ' 
2(1+$*$) Af'lx; I, k)=( ) Jx; 1 *$, k +$) 

4 2 1  + 1)(1 rk + i d  
2(1 +$*$) i i f"x;  I ,  k)= *( 2))i lx;  1 *$, k -$). 

(37) 

Since Ikl s I ,  we see that %)+* never annihilates ( x ;  I ,  k); hence there is no maximum 1 
value and the IUR of 0(3)A(T~XT2) is infinite dimensional. The states up to 1 =$, 
together with the actions of the h)*, are depicted in figure 1. 

We may now introduce the internal O'(3) structure of the IUR and reintroduce the m 
label. From equation (16) we obtain immediately 

I' 

3 -3  - 1  - 3  0 t 1 I k  

Fignre 1. The O(3) content of the IUR x > 0, I,, = 0 of 0(3),(T2 x T2) for the first four 1 
values. The IUR of O(3) are indicated by full circles; open arrows and closed arrows indicate 
the actions of the operators A*j and'A*', respectively. 
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Using equations (14) and (15), the above two equations can be used to obtain the 
actions of the & . These are easily found to be 

and 

'-'*J*Ff 
Putting these back into the parts of equations (14) and (15) relating to 01 , yields 

(-) 
Finally, using equation (lo), the reduced matrix elements of q can be obtained. The 

only non-vanishing ones are 

(x; /*$, k+$JIqlIx; I, k ) =  F [ ~ ( l * k + $ * i ) ] ~  

( x ;  I *i, k -41 141 ( x ;  1, k )  = -[x(l T k +f*$)]'. 

(45) 

(46) 

and 

This completes the analysis of the x # 0 IUR of 0(3),,(T2 X T2). The whole structure 
of the IUR is contained in equations (41) and (42), or alternatively in (45) and (46). The 
full weight diagram, together with the actions of the 0 shift operators, is depicted for 1 
values up to 1 = 1 in figure 2. One sees that every IUR of O(4) of hydrogenic type occurs 
precisely once, where we identify I = $(n - l), n being the principal quantum number. 
0(3),,(T2 x T2) may therefore be regarded as the spectral group of the hydrogen atom, 
in place of the usual O(4, 1). The given IUR of 0(3),,(T2 X T2) is clearly identical to the 
IUR of O(4,l) used for this purpose. Also, there is a continuously infinite set of such IUR, 
all with this structure, corresponding to all positive real values of x. We shall see in the 
following section that 0(3),,(T2 x T2) is in fact the dynamical group of the hydrogen 
atom. 

4. o(3),f12 X 2 )  and the hydrogen atom 

The O(4) symmetry of the hydrogen atom is a consequence (see Pauli 1926, Hughes 
1967) of the fact that the quantum-mechanical angular momentum operator, J, and the 
normalized Runge-Lenz vector A% commute with the Hamiltonian operator. If one 
defines 

P = $(J+&, I = ;(J--&) (47) 
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Figure 2. The states of the IUR x > 0, I , , ,  = 0 of 0(3),(T2 x T2) for the first three 1 values, 
showing the directions of action of the various shift operators. The states ( x ;  1, k, m) are 
indicated by full circles. 

one may easily see that the components of P and 12atisfy the same Hermiticity 
properties and commutation relations as do the 1 and Y operators of this paper, i.e. 
those of the group O(4) = O'(3) X OY(3). Moreover, since J .  M = h. J =  0, one may 
easily deduce that the Casimirs of the two O(3) subgroups are equal and have the 
eigenvalues 1(1 + l), where I = 0, 1, 1, . . . , so the IUR of O(4) pertaining to the hydrogen 
atom are just the ones that occur for the x > 0 IUR of 0(3),,(T2 x T2) .  Also, 21 + 1 = n is 
just the principal quantum number. Our states, for which lo and 'Eo are diagonal, 
correspond to the Stark states of the hydrogen atom, Inl, n2, M), obtained by separating 
out the Schrodinger equation in parabolic cylinder coordinates ( M  is the eigenvalue of 
the angular momentum operator Jo). Hence we make the identification 

Ix; I, k, m)=Jnl ,  n2, M )  (48) 
where we suppress the x label from the hydrogenic states, and ( I ,  k ,  m) are related to 
(n1, n2, M )  by 

I = ;(al + n;?+M), k = $ ( M +  n2 - nl), m = + ( ~ - n ~ + n * )  (49) 
whose inverse is 

M = m + k ,  nl = 1 - - ik  + i m  - i / m  + kl, n 2 = 1 + ; k - 4 m - $ m + k ( .  (50) 

Using equations (391, (401, (43) and (44) we may rewrite the actions of the 0 
operators on Inl, n2, M ) ,  noting that raising 1 by & $  is equivalent to raising n by *l. 
Unfortunately the presence of the /MI in the above two equations means that for four of 
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these operators (the ones that change M ) ,  the cases M > 0 and M < 0 must be treated 
separately, which does make them a little tedious to write out. The actions are as follows 
for all values of M :  

We now define the operators N:,2, A z ,  A by 
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Using equations (51)-(58) one may readily verify that the operators given by equations 
(59) have precisely the same actions on the Inl, n2,  M) as do those of the same name 
introduced by Barut and Kleinert (1966). These authors showed that the above 
operators, together with the O(4) generators, generate the group 0(4,2) ,  where N is 
the generator of the O(2) subgroup occurring in the chain 0(4 ,2)  3 O(4) X O(2) 2 O(2). 
In fact the expressions of Barut and Kleinert for these operators contain M, not \MI; for 
instance they write n = n l + n 2 + M + 1 ,  which is valid only for M S O ,  rather than 
n = nl  + n2 + [MI + 1.  Their expressions for the actions of the N;,2, A: and A: on 
Inl, n2,  M) are therefore valid only for M a  0, whereas ours are valid for all values of M. 
It is easy to check that the commutation relations for our operators are the same for 
negative M as for positive M and may therefore be regarded as the generalizations to all 
values of M of the operators of Barut and Kleinert. Note that the expressions for the 
operators of equation (59) contain an n-dependent normalization; this is entirely 
analogous to the fact that our shift operators contain factors containing 1 in their 
expressions in terms of the generators of 0(3),,(T2 x T2). 

Barut and Kleinert show that the matrix elements of the dipole operator can be 
given in terms of those of the 0(4 ,2)  operators, and therefore call 0(4 ,2)  the 
'dynamical group' of the hydrogen atom. We see from the above that we may call 
0(3)~(T2 x T2) the dynamical group of the hydrogen atom. Everything that can be done 
using the fifteen parameter group 0(4 ,2)  can be achieved using our seven parameter 
group. In fact both the symmetry and dynamical properties of the hydrogen atom are 
contained in the actions of the generators of 0(3)~(T2 x T2), which we give below: 

-( 1 9 4 -  1, M) 

f o r M S 0  

forM<O 

forM>O 

for M S  0 

f o r M a o  
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fo rM<O 

x ( n l - M +  l ) (nz-M+ 1) )$In1, n21 M -  1) f o r M s O .  +( n ( n + 1 )  

These operators presumably have a direct physical interpretation in terms of the 
hydrogenic wavefunctions. They could, in principle, be written down in terms of the 
angular momentum and Runge-Lenz operators and, thereby, be expressed as differen- 
tial operators in terms of the space coordinates. The authors intend to investigate these 
possibilities further and hope to publish their results in due course. 
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